A periodic boundary value problem in Hilbert space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

A periodic boundary value problem with vanishing Green's function

In this work, the authors consider the boundary value problem { y + a(t)y = g(t) f (y), 0 ≤ t ≤ 2π, y(0) = y(2π), y(0) = y(2π), and establish the existence of nonnegative solutions in the case where the associated Green’s function may have zeros. The results are illustrated with an example. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Reproducing Kernel Hilbert Space(RKHS) method for solving singular perturbed initial value problem

In this paper, a numerical scheme for solving singular initial/boundary value problems presented.By applying the reproducing kernel Hilbert space method (RKHSM) for solving these problems,this method obtained to approximated solution. Numerical examples are given to demonstrate theaccuracy of the present method. The result obtained by the method and the exact solution are foundto be in good agr...

متن کامل

existence and uniqueness of solutions for a periodic boundary value problem

in this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in banach spaces admitting the existence of a lower solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Bohemica

سال: 1994

ISSN: 0862-7959,2464-7136

DOI: 10.21136/mb.1994.126123